metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Diaguadibromidobis[3-dimethylamino- $1-(4-pyridyl-\kappa N)$ prop-2-en-1-one]cadmium(II)

Hua-Ze Dong,^a Zhao-Lian Chu^b and Nai-Liang Hu^c*

^aDepartment of Chemistry and Chemical Engineering, Hefei Teachers College, Hefei 230061, People's Republic of China, ^bInstitute of Molecular Engineering & Applied Chemistry, School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, People's Republic of China, and CSchool of Chemistry and Chemical Engineering, Anhui University, Hefei 230039, People's Republic of China

Correspondence e-mail: dapdong@163.com

Received 20 February 2009; accepted 25 February 2009

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.004 Å; R factor = 0.035; wR factor = 0.090; data-to-parameter ratio = 16.4.

In the title compound, $[CdBr_2(C_{10}H_{12}N_2O)_2(H_2O)_2]$, the Cd^{II} ion is located on an inversion center and is six-coordinated by two N atoms [Cd-N = 2.377 (3) Å] from two different 3dimethylamino-1-(4-pyridyl)prop-2-en-1-one ligands, two O atoms [Cd-O = 2.355(2) Å] from two coordinated water molecules and two bromide anions [Cd-Br = 2.6855 (5) Å]. Intermolecular $O-H \cdots O$ hydrogen bonds link the molecules into layers parallel to the bc plane.

Related literature

For general backgroud, see: Bi et al. (2008); Dong et al. (2008). For related structures, see: Hu et al. (2003); Ito et al. (1984). For details of the synthesis, see Sun et al. (2008).

Experimental

Crystal data

 $[CdBr_2(C_{10}H_{12}N_2O)_2(H_2O)_2]$ V = 2401.1 (5) Å³ $M_r = 660.68$ Z = 4Monoclinic, C2/c Mo Ka radiation a = 21.362 (3) Å $\mu = 4.27 \text{ mm}^$ b = 8.4360 (9) Å T = 273 Kc = 14.6371 (16) Å $0.2 \times 0.2 \times 0.2$ mm $\beta = 114.456 (3)^{\circ}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{\min} = 0.407, T_{\max} = 0.424$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.035$	144 parameters
$wR(F^2) = 0.090$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.62 \ {\rm e} \ {\rm \AA}^{-3}$
2356 reflections	$\Delta \rho_{\rm min} = -0.93 \ {\rm e} \ {\rm \AA}^{-3}$

6227 measured reflections

 $R_{\rm int} = 0.073$

2356 independent reflections

2085 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} O2 - H2A \cdots O1^{i} \\ O2 - H2B \cdots O1^{ii} \end{array}$	0.85	2.02	2.770 (3)	147
	0.85	2.31	2.751 (4)	113

Symmetry codes: (i) x, y - 1, z; (ii) $-x + 1, y - 1, -z + \frac{1}{2}$.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors are indebted to Anhui Provincial Natural Science Research Project (KJ2009B240Z) and the National Natural Science Foundation of China (No.20871039) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2525).

References

Bi, J. H., Kong, L. T., Huang, Z. X. & Liu, J. H. (2008). Inorg. Chem. 47, 4564-4569.

Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Dong, H. Z., Yang, J., Liu, X. & Gou, S. H. (2008). Inorg. Chem. 47, 2913-2915. Hu, C. H., Li, Q. & Englert, U. (2003). CrystEngComm, 5, 519-529.

Ito, M., Shibata, T. & Saito, Y. (1984). Acta Cryst. C40, 2041-2043.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Sun, Y.-Y., Dong, H.-Z. & Cheng, L. (2008). Acta Cryst. E64, 0901.

supplementary materials

Acta Cryst. (2009). E65, m358 [doi:10.1107/S1600536809007028]

Diaquadibromidobis[3-dimethylamino-1-(4-pyridyl- κN)prop-2-en-1-one]cadmium(II)

H.-Z. Dong, Z.-L. Chu and N.-L. Hu

Comment

In recent years, researchers showed considerable interest in the physical and chemical properties of mono- and polynuclear complexes of transition metals having the d^{10} electronic configuration (Bi *et al.*, 2008; Dong *et al.*, 2008). Ligands with pyridyl group have been used to generate various metal-organic architectures with cadmium salts (Hu *et al.*, 2003; Ito *et al.*, 1984). Here we report a new monomeric cadmium(II) complex, *viz.* the title compound, [Cd(C₁₀H₁₂N₂O)₂Br₂(H₂O)₂].

The asymmetric unit of the title compound contains a half of centrosymmetric molecule, and the Cd^{II} ion lies on an inversion center. Each Cd^{II} ion exhibits an octahedral environment with two nitrogen atoms from the pyridyl groups of two ligands, two oxygen atoms from two coordinated water molecules, and two bromine anions (Fig. 1). Intermolecular O—H…O hydrogen bonds (Table 1) link the molecules into layers parallel to *bc* plane.

Experimental

All solvents and chemicals were of analytical grade and were used without further purification. Ligand was prepared by similar procedure reported in the literature (Sun *et al.*, 2008). For the synthesis of title compoud, a solution of ligand (0.1 mmol), CdBr₂ (0.1 mmol) in 30 ml me thanol was refluxed for 2 h, and then cooled to room temperature and filtered. Single crystals suitable for X-ray analysis were grown from the methanol solution by slow evaporation at room temperature in air. Anal. Calcd. for $C_{20}H_{28}CdN_4O_4Br_2$: C, 36.36; H, 4.27; N, 8.48. Found: C, 36.38; H, 4.38; N, 8.32. Main FT—IR (KBr, cm⁻¹): 3078(*w*), 1627(*s*), 1603(*m*), 1558(*w*), 1498(*s*), 1437(*m*), 1384(*m*), 1329(*w*), 1233(*m*), 781(*w*).

Refinement

All hydrogen atoms were geometrically positioned (C—H 0.93–0.97 Å, O–H 0.85 Å) and refined as riding, with $U_{iso}(H)=1.2-1.5 U_{eq}$ of the parent atom.

Figures

Fig. 1. Molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering [symmetry code: (A) 1 - x, 1 - y, 1 - z].

Diaquadibromidobis[3-dimethylamino-1-(4-pyridyl-κN)prop-2-en-1- one]cadmium(II)

Crystal data

 $[CdBr_2(C_{10}H_{12}N_2O)_2(H_2O)_2]$ $F_{000} = 1304$ $M_r = 660.68$ $D_{\rm x} = 1.828 {\rm Mg m}^{-3}$ Mo Kα radiation Monoclinic, C2/c $\lambda = 0.71073 \text{ Å}$ Hall symbol: -C 2yc Cell parameters from 3328 reflections $\theta = 2.6 - 27.8^{\circ}$ *a* = 21.362 (3) Å *b* = 8.4360 (9) Å $\mu = 4.27 \text{ mm}^{-1}$ *c* = 14.6371 (16) Å T = 273 K $\beta = 114.456 (3)^{\circ}$ Block, colourless $0.2 \times 0.2 \times 0.2$ mm $V = 2401.1 (5) \text{ Å}^3$ Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer	2356 independent reflections
Radiation source: fine-focus sealed tube	2085 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.073$
<i>T</i> = 273 K	$\theta_{\text{max}} = 26.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.1^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2000)	$h = -26 \rightarrow 25$
$T_{\min} = 0.407, \ T_{\max} = 0.424$	$k = -8 \rightarrow 10$
6227 measured reflections	$l = -18 \rightarrow 17$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.035$	H-atom parameters constrained
$wR(F^2) = 0.090$	$w = 1/[\sigma^2(F_o^2) + (0.0479P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\rm max} < 0.001$
2356 reflections	$\Delta \rho_{max} = 0.62 \text{ e} \text{ Å}^{-3}$
144 parameters	$\Delta \rho_{min} = -0.93 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	–

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Experimental. The structure was solved by direct methods (Bruker, 2000) and successive difference Fourier syntheses.

-- . .--

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso} * / U_{\rm eq}$
Cd1	0.5000	0.5000	0.5000	0.02740 (13)
Br1	0.626658 (19)	0.61470 (5)	0.54529 (3)	0.04254 (15)
C1	0.44435 (18)	0.8564 (4)	0.4098 (2)	0.0332 (8)
H1	0.4561	0.8760	0.4775	0.040*
C2	0.43309 (18)	0.6830 (4)	0.2848 (2)	0.0350 (8)
H2	0.4368	0.5807	0.2639	0.042*
C3	0.42099 (19)	0.9802 (4)	0.3443 (2)	0.0317 (8)
Н3	0.4171	1.0810	0.3673	0.038*
C4	0.40298 (16)	0.9534 (4)	0.2423 (2)	0.0270 (7)
C5	0.40919 (18)	0.7997 (4)	0.2139 (2)	0.0341 (8)
H5	0.3971	0.7758	0.1467	0.041*
C6	0.33391 (18)	1.0483 (5)	0.0698 (2)	0.0337 (8)
Н6	0.3149	0.9472	0.0558	0.040*
C7	0.38011 (16)	1.0865 (4)	0.1687 (2)	0.0276 (7)
C8	0.2340 (2)	0.9862 (5)	-0.1300 (3)	0.0524 (11)
H8A	0.2646	0.9016	-0.1281	0.079*
H8B	0.1990	0.9969	-0.1970	0.079*
H8C	0.2131	0.9631	-0.0848	0.079*
C9	0.2647 (2)	1.2464 (5)	-0.1787 (3)	0.0423 (9)
H9A	0.2856	1.3452	-0.1492	0.063*
H9B	0.2167	1.2629	-0.2196	0.063*
H9C	0.2866	1.2058	-0.2195	0.063*
C10	0.31637 (17)	1.1583 (4)	-0.0065 (2)	0.0299 (7)
H10	0.3371	1.2575	0.0093	0.036*
N1	0.45139 (14)	0.7084 (3)	0.38242 (19)	0.0311 (6)
N2	0.27261 (15)	1.1335 (4)	-0.1000 (2)	0.0338 (7)
01	0.40227 (12)	1.2232 (3)	0.19871 (16)	0.0343 (5)
O2	0.50607 (12)	0.3380 (3)	0.37287 (16)	0.0368 (6)
H2A	0.4661	0.3344	0.3253	0.044*
H2B	0.5323	0.3885	0.3525	0.044*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Cd1	0.0341 (2)	0.0237 (2)	0.02374 (19)	0.00164 (13)	0.01137 (15)	0.00238 (13)

supplementary materials

Br1	0.0377 (2)	0.0426 (3)	0.0455 (2)	-0.00547 (16)	0.01541 (19)	0.00457 (17)
C1	0.043 (2)	0.031 (2)	0.0228 (15)	-0.0064 (15)	0.0108 (14)	0.0005 (14)
C2	0.043 (2)	0.0280 (19)	0.0297 (16)	0.0049 (15)	0.0112 (15)	0.0012 (15)
C3	0.043 (2)	0.0242 (19)	0.0264 (16)	-0.0044 (14)	0.0129 (15)	-0.0006 (13)
C4	0.0252 (17)	0.0282 (17)	0.0270 (15)	-0.0016 (13)	0.0102 (13)	0.0032 (14)
C5	0.042 (2)	0.036 (2)	0.0241 (15)	0.0019 (15)	0.0131 (15)	-0.0017 (15)
C6	0.037 (2)	0.0299 (19)	0.0284 (16)	-0.0003 (15)	0.0076 (15)	0.0022 (15)
C7	0.0299 (18)	0.029 (2)	0.0260 (16)	0.0017 (14)	0.0132 (14)	0.0028 (14)
C8	0.058 (3)	0.049 (3)	0.037 (2)	-0.0098 (19)	0.006 (2)	-0.0102 (18)
C9	0.044 (2)	0.051 (2)	0.0299 (17)	0.0098 (18)	0.0135 (16)	0.0129 (17)
C10	0.0322 (18)	0.0291 (18)	0.0275 (15)	0.0002 (14)	0.0115 (14)	-0.0019 (14)
N1	0.0342 (16)	0.0294 (17)	0.0295 (14)	-0.0007 (12)	0.0129 (12)	0.0049 (12)
N2	0.0338 (16)	0.0398 (18)	0.0251 (13)	0.0008 (12)	0.0094 (12)	0.0021 (13)
O1	0.0407 (14)	0.0288 (14)	0.0293 (11)	-0.0061 (10)	0.0105 (11)	0.0017 (10)
O2	0.0361 (13)	0.0434 (15)	0.0304 (12)	-0.0041 (11)	0.0132 (10)	-0.0094 (11)

Geometric parameters (Å, °)

Cd1—O2 ⁱ	2.355 (2)	C6—C10	1.379 (5)
Cd1—O2	2.355 (2)	C6—C7	1.411 (4)
Cd1—N1 ⁱ	2.377 (3)	С6—Н6	0.9300
Cd1—N1	2.377 (3)	C7—O1	1.255 (4)
Cd1—Br1 ⁱ	2.6855 (5)	C8—N2	1.455 (5)
Cd1—Br1	2.6855 (5)	C8—H8A	0.9600
C1—N1	1.339 (4)	C8—H8B	0.9600
C1—C3	1.365 (5)	C8—H8C	0.9600
С1—Н1	0.9300	C9—N2	1.449 (4)
C2—N1	1.333 (4)	С9—Н9А	0.9600
C2—C5	1.366 (5)	С9—Н9В	0.9600
С2—Н2	0.9300	С9—Н9С	0.9600
C3—C4	1.398 (4)	C10—N2	1.316 (4)
С3—Н3	0.9300	C10—H10	0.9300
C4—C5	1.385 (5)	O2—H2A	0.8500
C4—C7	1.491 (4)	O2—H2B	0.8501
С5—Н5	0.9300		
O2 ⁱ —Cd1—O2	180.0	C10—C6—C7	121.2 (3)
O2 ⁱ —Cd1—N1 ⁱ	90.43 (9)	С10—С6—Н6	119.4
O2—Cd1—N1 ⁱ	89.57 (9)	С7—С6—Н6	119.4
O2 ⁱ —Cd1—N1	89.57 (9)	O1—C7—C6	124.8 (3)
O2—Cd1—N1	90.43 (9)	O1—C7—C4	118.4 (3)
N1 ⁱ —Cd1—N1	180.00 (11)	C6—C7—C4	116.8 (3)
O2 ⁱ —Cd1—Br1 ⁱ	91.41 (6)	N2—C8—H8A	109.5
O2—Cd1—Br1 ⁱ	88.59 (6)	N2—C8—H8B	109.5
N1 ⁱ —Cd1—Br1 ⁱ	90.33 (7)	H8A—C8—H8B	109.5
N1—Cd1—Br1 ⁱ	89.67 (7)	N2—C8—H8C	109.5
O2 ⁱ —Cd1—Br1	88.59 (6)	H8A—C8—H8C	109.5

O2—Cd1—Br1	91.41 (6)	H8B—C8—H8C	109.5
N1 ⁱ —Cd1—Br1	89.67 (7)	N2—C9—H9A	109.5
N1—Cd1—Br1	90.33 (7)	N2—C9—H9B	109.5
Br1 ⁱ —Cd1—Br1	180.000 (15)	Н9А—С9—Н9В	109.5
N1—C1—C3	123.8 (3)	N2—C9—H9C	109.5
N1—C1—H1	118.1	Н9А—С9—Н9С	109.5
С3—С1—Н1	118.1	Н9В—С9—Н9С	109.5
N1—C2—C5	123.3 (3)	N2-C10-C6	125.0 (3)
N1—C2—H2	118.3	N2-C10-H10	117.5
С5—С2—Н2	118.3	С6—С10—Н10	117.5
C1—C3—C4	119.1 (3)	C2—N1—C1	116.8 (3)
С1—С3—Н3	120.5	C2—N1—Cd1	120.2 (2)
С4—С3—Н3	120.5	C1—N1—Cd1	122.8 (2)
C5—C4—C3	117.0 (3)	C10—N2—C9	121.4 (3)
C5—C4—C7	122.1 (3)	C10—N2—C8	121.3 (3)
C3—C4—C7	120.9 (3)	C9—N2—C8	117.2 (3)
C2—C5—C4	119.9 (3)	Cd1—O2—H2A	107.7
С2—С5—Н5	120.0	Cd1—O2—H2B	104.3
С4—С5—Н5	120.0	H2A—O2—H2B	108.3

Symmetry codes: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
O2—H2A…O1 ⁱⁱ	0.85	2.02	2.770 (3)	147
O2—H2B…O1 ⁱⁱⁱ	0.85	2.31	2.751 (4)	113

Symmetry codes: (ii) x, y-1, z; (iii) -x+1, y-1, -z+1/2.

